336. The Dissociation Constants of Organic Acids. Part XIX. Some Unsaturated Acids.

By William L. German, George H. Jeffery, and Arthur I. Vogel.

Abstract

Conductivity measurements in silica or Pyrex cells at 25° over the concentration range $0.0001-0.01 \mathrm{~N}$ of the following acids and their sodium salts have been made: acrylic, trans-crotonic, $\beta \beta$-dimethylacrylic, tetrolic, furoic, and glutaconic acids. The results for the sodium salts have been corrected for hydrolysis and the carbonic acid in the water used.

The thermodynamic dissociation constants of the monobasic acids and the primary dissociation constant of glutaconic acid have been calculated by a modification of MacInnes's method.

The true dissociation constants of the acids have also been determined by potentiometric titration with the quinhydrone electrode.

It is shown that the ratio K_{1} / K_{2} and also the titration curve for glutaconic acid, m. p. 138°, are similar to those for fumaric acid; independent evidence for the trans-configuration is thus obtained.

The present communication provides accurate conductivity data over the range 0.0001 $0.01 N$ for a number of unsaturated acids (and their sodium salts) of theoretical interest. These have been employed for the evaluation of the thermodynamic dissociation constants. Acrylic acid, trans-crotonic acid and $\beta \beta$-dimethylacrylic acid give values for $K_{\text {thern. }}$ in agreement with those expected from the modern electronic theory and are in accord with the work of Ives, Linstead, and Riley (J., 1933, 561).

$$
\begin{array}{cccc}
\mathrm{CH}_{2}: \mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{H} & \mathrm{CHMe}: \mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{H} & \mathrm{CMe}_{2}: \mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{H} & \mathrm{CMe}: \mathrm{C}^{2} \cdot \mathrm{CO}_{2} \mathrm{H} \\
5.501 \times 10^{-5} & 2.030 \times 10^{-5} & 7.569 \times 10^{-6} & 2 \cdot 228 \times 10^{-3}
\end{array}
$$

The larger value for tetrolic acid as compared with trans-crotonic acid is noteworthy. Determination of the true dissociation constants have also been made by potentiometric titration with the quinhydrone electrode. The results agree with the conductivity values within $2-4 \%$, showing that the quinhydrone electrode is trustworthy with these unsaturated acids.

Since the work was completed, independent determinations of $K_{\text {therm. }}$ for trans-crotonic acid (Saxton and Waters, J. Amer. Chem. Soc., 1937, 59, 1048) and acrylic acid (Dippy and Lewis, this vol., p. 1010) have been described. Saxton and Waters find $K_{\text {therm. }}=1.97_{5} \times$ 10^{-5}, which is about 3% lower than our figure. Their values of Λ for the acid agree well with our own, as do also the measurements of Ives, Linstead, and Riley (loc. cit.), but serious divergences (ca. 2 units) are apparent in the conductivity figures for the sodium salt. Saxton and Waters prepared their solutions of sodium crotonate from the acid and sodium carbonate-a not altogether satisfactory procedure-and corrected the conductivities for the effect of the excess of acid. Our measurements were made with solutions prepared from pure solid sodium crotonate, and corrections for hydrolysis and for the carbonic acid in the equilibrium water used were applied as described in Part XI (J., 1935, 24). The

American authors give $\Lambda_{0}=83 \cdot 30$ (sodium salt) and $\Lambda_{0}=383 \cdot 11$ (acid; deduced from their own measurements upon hydrochloric acid and sodium chloride); our values are 84.35 and 381.84 respectively. The latter are in satisfactory agreement with the results of Ives, Linstead, and Riley (loc. cit.) ($84 \cdot 4$ and $381 \cdot 8$ respectively).

Dippy and Lewis's conductivity figures for acrylic acid are in good agreement with our own, but they give $\Lambda_{0}=87.5$ for sodium acrylate (prepared in solution from the acid and sodium hydroxide solution), whereas we find $\Lambda_{0}=90 \cdot 62$. No conductivity figures for the sodium salt are given by Dippy and Lewis, who employed a semi-empirical procedure for the determination of Λ_{0} (J., 1934, 162, 1889). The difference between their value of $K_{\text {therm. }}$, $5 \cdot 56 \times 10^{-5}\left[\Lambda_{0}=387 \cdot 1\right.$, based on their own value for Λ_{0} of the sodium salt and upon MacInnes, Shedlovsky, and Longsworth's figures (J. Amer. Chem. Soc., 1932, 54, 2758) for the limiting mobilities of the sodium ($50 \cdot 10$) and hydrogen ($349 \cdot 72$) ions], and that of the present authors, $5.501 \times 10^{-5}\left(\Lambda_{0}=388.8\right)$, is due largely to the different values of the mobilities employed in the calculations.

We find $K_{1 \text { therm. }}$ for glutaconic acid by conductivity $=1.711 \times 10^{-4}$. The values for $K_{1 \text { therm. }}$ and $K_{2 \text { therm., }}$, determined by potentiometric titration with the quinhydrone electrode, together with those for maleic and fumaric acids (Phil. Mag., 1936, 22, 790), are in the following table.

Acid.	$K_{1 \text { therm. }}$	$K_{\text {therm. }}$	K_{1} / K_{2}.
Maleic $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$.	$1 \cdot 20 \times 10^{-2}$	$5 \cdot 95 \times 10^{-7}$	$2 \cdot 02 \times 10^{-4}$
Fumaric $\ldots \ldots \ldots \ldots \ldots \ldots$.	$9 \cdot 57 \times 10^{-4}$	$4 \cdot 13 \times 10^{-5}$	23.2
Glutaconic $\ldots \ldots \ldots \ldots \ldots$.	$1 \cdot 70 \times 10^{-4}$	8.38×10^{-6}	20.3

The similarity between glutaconic and fumaric acids, indicated by the ratios K_{1} / K_{2}, is clearly shown by the titration curves (figure); the abscissæ have been displaced for the

different acids to avoid overlapping. Very strong physical evidence is thus provided for the trans-structure of glutaconic acid, m. p. 138°. This view is rendered highly probable by the isolation of the unstable cis-glutaconic acid, m. p. $136.0-136.5^{\circ}$, by Malachowski (Ber., 1929, 62, 1323). This author found for the classical primary dissociation constants of cis- and trans-glutaconic acid at 0° the values 1.43×10^{-4} and 1.74×10^{-4} respectively. These approximate figures alone are insufficient to establish the cis- and trans-structures of these dibasic acids (compare maleic and fumaric acids); the small difference between them would appear to indicate that the unstable acid has been largely converted into the transform during the measurements. The original view of Feist as to the isomerism of the glutaconic acids and their derivatives, now accepted, but in slightly modified form, by Thorpe (J., 1931, 547, 1015) and supported by the recent work of Kon and his collaborators (J., 1931 et seq.)—ordinary cis-trans isomerism coupled with three-carbon tautomerismis thus confirmed by an independent method.

1606 German, Jeffery, and Vogel: The Dissociation Constants of

The dissociation constant of furoic acid found by conductivity is 6.776×10^{-4} and by potentiometric titration 6.99×10^{-4}. This constant was required in connexion with the new buffer mixtures incorporating furoic acid (Analyst, 1937, 62, 271); the value calculated from the buffer mixtures was 6.70×10^{-4}.

Experimental.

Preparation of Materials.-All the acids (with the exception of acrylic acid) were kept over calcium chloride in vacuum desiccators for several days before use. All solvents were of analytical reagent purity and sodium-dried.

Acrylic acid. 50 G . of Schuchardt's " Acid acrylic crystallis " were distilled from a fractionating Claisen flask in an all Pyrex glass apparatus; the fraction, b. p. $140^{\circ} / 753 \mathrm{~mm} ., \mathrm{m}$. p. 13°, was used in the determinations (Biilmann, J. pr. Chem., 1900, 61, 494, gives b. p. 140.8-141 ${ }^{\circ}$).
trans-Crotonic acid. A commercial sample, m. p. 72-73 ${ }^{\circ}$, was recrystallised from light petroleum (b. p. $40-60^{\circ}$) and then twice from toluene. The feathery flat prisms, which tended to occlude some of the latter solvent, were powdered and left over calcium chloride in a vacuum desiccator for several days. One further recrystallisation from light petroleum (b. p. 60-80 $)$ gave pure crotonic acid, m. p. $72 \cdot 5^{\circ}$.
$\beta \beta$-Dimethylacrylic acid. This was prepared by a modification of Kohn's method (Monatsh., 1903, 24, 771)—oxidation of mesityl oxide, b. p. 126- 130°, with sodium hypobromite solution at 0°. The acid was recrystallised twice from hot water; m. p. 70°.

Tetrolic aicd. An adaptation of Feist's method (Annalen, 1906, 345, 104) was employed. In the final purification the oily acid was extracted with 15% potassium hydroxide solution, the aqueous extract cautiously acidified with hydrochloric acid, and the separated oil extracted three times with ether after saturation with ammonium sulphate. The oil left after removal of the ether crystallised partly on keeping; it was distilled under diminished pressure. The fraction, b. p. $90-95^{\circ} / 5 \mathrm{~mm}$., solidified completely on cooling. The solid crystallised from carbon tetrachloride in thin prisms, m. p. 78°.

Glutaconic acid. The method of Conrad and Gutzeit (Ber., 1882, 15, 284; Annalen, 1883, 222, 249 : compare Gutzeit and Bolam, J. pr. Chem., 1896, 54, 359; Heinrich, Monatsh., 1899, 20, 551 ; Ingold and Perren, J., 1921, 119, 1591), modified in certain details, was employed. The hydrolysis of the ethyl dicarbethoxyglutaconate was conducted as follows. 66 G . of the oil were treated with 70 c.c. of concentrated hydrochloric acid and 140 c.c. of water. The mixture was refluxed for 7 hours, evaporated to a small bulk on the water-bath, and extracted six times with ether. The dried extract (anhydrous sodium sulphate) was evaporated, and the residue spread on a porous tile. The sticky residue was triturated on the tile with light petroleum (b. p. $40-60^{\circ}$) ; this treatment removed oily matter and various impurities and led to a clean product. The residue (6.5 g .), m. p. $134-136^{\circ}$, was recrystallised twice from ether-light petroleum (b. p. $40-60^{\circ}$) and melted sharply at 138° (compare Conrad and Gutzeit, loc. cit., m. p. 133°; Gutzeit and Bolam, loc. cit., m. p. $137-138^{\circ}$; Birch, J., 1930, 310, m. p. 132°; Malachowski, loc. cit., m. p. $138.0-138.5^{\circ}$).

Furoic acid. The commercial product, m. p. 131-133 ${ }^{\circ}$, was crystallised from boiling water (charcoal) and then had m. p. $132-133^{\circ}$. 100 G . of this acid, 200 g . of absolute alcohol, 200 g . of sodium-dried AnalaR benzene, and 20 g . of concentrated sulphuric acid were refluxed for 20 hours. After the usual working-up, including washing with sodium hydroxide solution to remove unchanged acid, 75 g . of pure ethyl furoate, b. p. $192^{\circ} / 746 \mathrm{~mm}$., m. p. 38°, were obtained. A mixture of 60 g . of this ester in 120 g . of rectified spirit and 52 g . (2 mols.) of potassium hydroxide in 104 g . of water was refluxed for 16 hours, and then evaporated to dryness on the water-bath. The residue was triturated with ether, acidified with a large excess of dilute sulphuric acid at 0°, and extracted four times with ether. 49 G . of acid obtained on evaporation of the dried (anhydrous sodium sulphate) ethereal solution were recrystallised from chloroform and dried in a vacuum over calcium chloride; the product melted sharply at 132°.

Sodium salts. These were prepared by the sodium ethoxide method as employed for sodium malonamate (Part IX, J., 1934, 1102). Sodium $\beta \beta$-dimethylacrylate did not separate from the absolute alcoholic solution and was precipitated by the addition of pure ether ; it was purified by dissolution in absolute alcohol and precipitation with ether (Found: Na, 18.8. Calc., 18.9\%). The other salts were purified by solution in a small volume of water and precipitation with absolute methyl or ethyl alcohol : sodium crotonate (ethyl alcohol) (Found : Na, 21•3. Calc., $\mathbf{2 1} \cdot \mathbf{3} \%$) ; sodium tetrolate (ethyl alcohol) (Found: Na, 28.7. Calc., $\mathbf{2 8} \cdot \mathbf{8 \%}$); sodium acrylate
(methyl alcohol) (Found: Na, 24.4. Calc., 24.5\%); sodium glutaconate (methyl alcohol) (Found : Na, 26.3. Calc., $\mathbf{2 6} \cdot \mathbf{4} \%$) ; sodium furoate (ethyl alcohol) (Found : Na, 17.2. Calc., $17 \cdot 2 \%)$.

Geneval Technique and Apparatus.-This has already been described in the earlier papers of the series; the symbols have the same significance. All measurements were carried out at $25^{\circ} \pm 0.01^{\circ}$.

Conductivity Measurements.-The same Pyrex and silica glass cells as used in previous work were employed and the constants were found to be unchanged. No solvent correction was applied to the acids. For the sodium salts of the monobasic acids, a normal solvent correction was first applied (i.e., the specific conductivity of the water used was subtracted from the observed conductivity), from which a preliminary value of $\Lambda_{\mathbf{0}}$ and thence of $l_{\mathbf{0}_{\mathbf{x}}}$, and of $K_{\text {class }}$. was obtained. These figures were employed in the computation of the combined solvent and hydrolysis correction (J., 1933, 1642; 1934, 167; Phil. Mag., 1934, 18, 904). These preliminary figures are collected below.

Acid.		$l_{0 \times \mathrm{x}}$.	$K_{\text {class. }}$.
Acrylic	$\Lambda_{0}{ }^{n}=\Lambda_{c}+224 \cdot 2 \mathrm{C}^{0.560}=88.4$	$38 \cdot 6$	5.8×10^{-5}
Crotonic	$\Lambda_{0}{ }^{n}=\Lambda_{c}+310.4 C^{0.896}=83.9$	$34 \cdot 1$	2.1×10^{-5}
$\beta \beta$-Dimethylacrylic	$\Lambda_{0}{ }^{n}=\Lambda_{c}+357.7 C^{0.894}=80 \cdot 4$	$30 \cdot 6$	7.9×10^{-6}
Tetrolic	$\Lambda_{0}{ }^{n}=\Lambda_{c}+397.9 C^{0.900}=88.5$	$38 \cdot 7$	2.5×10^{-3}
Furoic	$\Lambda_{0}{ }^{n}=\Lambda_{c}+239 \cdot 3 C^{0.771}=84 \cdot 1$	34-3	7.3×10^{-1}

The method described in Part XI (J., 1935, 24) was employed for sodium glutaconate. The preliminary values, a " normal" solvent correction being used, were : $\mu_{0}=\mu_{c}+501 C^{0.552}=$ 207.3 , whence $l_{0^{\prime}}=53.6$ and $l_{0_{0 x}}=28.4 ; K_{2}$ (approx.), from the potentiometric titration curve, was taken as 1×10^{-5}. For the sodium hydrogen salt data required in the evaluation of $K_{\text {1therm., }} \Lambda_{0}=80.0$ and " x " $=78 \cdot 04$.

The results for the sodium salts are as follows :

> Sodium acrylate $(M=94 \cdot 02)$.
> $\Lambda_{0}{ }^{n}=\Lambda_{c}+197 \cdot 6 C^{0.497} . \quad \Lambda_{0}{ }^{n}=90 \cdot 62 . \quad l_{\mathbf{x}^{\prime}}=40 \cdot 8$.

$C \times 10^{4}$	$\Lambda_{\text {obs. }}$.	$\left[\mathrm{H}^{*}\right] \times 1$	107. $\Lambda_{\text {corr. }}$.	$\Lambda_{0}{ }^{n}$.	$C \times 10^{4}$.		$\left[\mathrm{H}^{+}\right] \times 10^{7}$	$0^{7} . \quad \Lambda_{\text {corr. }}$.	$\Lambda_{0}{ }^{n}$.
1.559	Run 1. 86.93	Cell V.	$\kappa=0.789$			Run 2.	Cell S.	$\kappa=\underset{86.01}{0.791}$	
10.04	$83 \cdot 62$	$5 \cdot 18$	$84 \cdot 37$	$90 \cdot 77$	$12 \cdot 69$	$\stackrel{85}{82} 8$	$3 \cdot 52$	83.35	$90 \cdot 51$
15.88	82.16	$1 \cdot 97$	82.52	$90 \cdot 56$	$20 \cdot 09$	$81 \cdot 18$	$1 \cdot 23$	$81 \cdot 49$	90.54
26.85	$80 \cdot 17$	$0 \cdot 83$	$80 \cdot 46$	90.96	35.71	$79 \cdot 14$	$0 \cdot 59$	$79 \cdot 36$	$90 \cdot 39$
$45 \cdot 26$	$78 \cdot 25$	$0 \cdot 46$	78.42	(91.42)	$52 \cdot 20$	$77 \cdot 71$	$0 \cdot 43$	77.78	(91-48)
59.61	$77 \cdot 30$	$0 \cdot 38$	$77 \cdot 46$	(0142)	$69 \cdot 35$	$76 \cdot 69$	0.36	76.74	-
81.89	$76 \cdot 11$	$0 \cdot 28$	$76 \cdot 17$	-	$92 \cdot 75$	$75 \cdot 74$	0.23	75.74	-
107.5	75.20	$0 \cdot 17$	75.20	-					

$$
\begin{gathered}
\text { Sodium crotonate }(M=108 \cdot 04) . \\
\Lambda_{0}^{n}=\Lambda_{c}+225 \cdot 2 C^{0.812} . \quad \Lambda_{0}{ }^{n}=84 \cdot 35 . \quad l_{0_{X^{\prime}}}=34 \cdot 6 .
\end{gathered}
$$

	Run 1. Cell V. $\kappa=0.819$.				Run 2		Cell S.	$\kappa=0.821$.	
$1 \cdot 365$	$82 \cdot 67$	$6 \cdot 11$	$85 \cdot 38$	-	9.221	$82 \cdot 82$	$2 \cdot 57$	83.51	$82 \cdot 46$
6.003	$82 \cdot 68$	$3 \cdot 19$	83.81	84-36	18.44	$82 \cdot 69$	1.51	82.95	$84 \cdot 30$
$12 \cdot 33$	82.78	$2 \cdot 21$	$83 \cdot 46$	$84 \cdot 44$	33.01	81.96	$0 \cdot 83$	$82 \cdot 15$	$84 \cdot 33$
23.01	82.46	$1 \cdot 27$	$82 \cdot 67$	$82 \cdot 49$	$47 \cdot 82$	81.32	$0 \cdot 48$	81.42	$84 \cdot 34$
39-11	81.68	$0 \cdot 66$	81.82	84-31	57.25	$80 \cdot 88$	$0 \cdot 42$	80.97	$84 \cdot 37$
$48 \cdot 85$	81.25	$0 \cdot 46$	81.34	$84 \cdot 34$	73.33	$80 \cdot 24$	$0 \cdot 37$	$80 \cdot 33$	$84 \cdot 50$
$64 \cdot 30$	$80 \cdot 55$	$0 \cdot 40$	$80 \cdot 60$	$84 \cdot 34$	97-24	$79 \cdot 33$	$0 \cdot 27$	$79 \cdot 40$	$84 \cdot 63$
84.94	$79 \cdot 80$	$0 \cdot 31$	79.88	84.58					

Sodium $\beta \beta$-dimethylacrylate ($M=122 \cdot 05$).

$$
\Lambda_{0}{ }^{n}=\Lambda_{c}+43 \cdot 83 C^{0.346} . \quad \Lambda_{0}{ }^{n}=84 \cdot 44 . \quad l_{0^{\prime}}=34 \cdot 6
$$

	Run 1. Cell V. $\kappa=0.850$.					Run	Cell	$=0 \cdot 8$	
1.708	78.50	$3 \cdot 35$	81.92		$9 \cdot 221$	82.82	2.57	83.51	$82 \cdot 46$
$7 \cdot 423$	79.87	$1 \cdot 09$	$80 \cdot 65$	$84 \cdot 27$	18.44	82.69	1.51	82.95	$84 \cdot 30$
11.89	79.58	0.73	$80 \cdot 17$	$84 \cdot 43$	33.01	81.96	$0 \cdot 83$	$82 \cdot 15$	84.33
21.48	78.96	$0 \cdot 43$	79-19	$84 \cdot 52$	$47 \cdot 82$	81.32	$0 \cdot 48$	81.42	84:34
39.07	77.94	$0 \cdot 24$	78.08	84.51	$57 \cdot 25$	80.88	$0 \cdot 42$	80.97	84.37
52.47	$77 \cdot 23$	$0 \cdot 18$	$77 \cdot 31$	$84 \cdot 44$	$73 \cdot 33$	$80 \cdot 24$	$0 \cdot 37$	$80 \cdot 33$	$84 \cdot 50$
74.62	76.40	$0 \cdot 13$	76.46	(84.81)	$97 \cdot 24$	$79 \cdot 33$	$0 \cdot 27$	$79 \cdot 40$	$84 \cdot 63$
98.09	$75 \cdot 65$	$0 \cdot 10$	$75 \cdot 69$	(84.94)					

Sodium furoate ($M=134 \cdot 02$).

$$
\Lambda_{0}{ }^{n}=\Lambda_{c}+119 \cdot 7 C^{0.707} . \quad \Lambda_{0} n=84 \cdot 80 . \quad l_{0 X^{\prime}}=35 \cdot 0
$$

1-336	Run 1. Cell V. $\quad \kappa=0.760$.				İun 2. Cell S. $\kappa=0 \cdot 765$.				
	$83 \cdot 84$	$17 \cdot 6$	$84 \cdot 29$	-	$3 \cdot 331$	83.63	$16 \cdot 2$	$83 \cdot 96$	
$6 \cdot 110$	$83 \cdot 39$	13.3	$83 \cdot 74$	$84 \cdot 80$	$8 \cdot 712$	83.06	$11 \cdot 3$	$83 \cdot 33$	$84 \cdot 70$
11.65	82-52	$9 \cdot 81$	82.85	84.53	18.51	$82 \cdot 17$	$8 \cdot 42$	$82 \cdot 39$	$84 \cdot 71$
25.48	$81 \cdot 65$	$8 \cdot 11$	81.80	$84 \cdot 72$	$33 \cdot 44$	$81 \cdot 19$	$7 \cdot 21$	81-33	$84 \cdot 87$
$41 \cdot 02$	$80 \cdot 82$	$6 \cdot 72$	$80 \cdot 94$	$85 \cdot 04$	47-68	$80 \cdot 48$	$6 \cdot 19$	$80 \cdot 60$	$(85 \cdot 15)$
53.75	$80 \cdot 35$	$5 \cdot 60$	80.45	(85.44)	61.89	$79 \cdot 93$	$5 \cdot 31$	$80 \cdot 02$	-
$69 \cdot 31$	$79 \cdot 74$	$4 \cdot 91$	$79 \cdot 80$	(85.74)	$77 \cdot 12$	$79 \cdot 48$	$4 \cdot 62$	$79 \cdot 56$	-
92-24	$79 \cdot 15$	$3 \cdot 98$	79.20	-	$87 \cdot 72$	$79 \cdot 19$	$4 \cdot 02$	$79 \cdot 24$	-

Sodium glutaconate ($M=174 \cdot 03$).

$\mu_{0}{ }^{n}=\mu_{c}+406 \cdot 8 C^{0.470}$.									
	Run 1.	V.	$0 \cdot 638$			Run 2.	1 .	0.662	
$0 \cdot 881$	$202 \cdot 62$	$4 \cdot 91$	$209 \cdot 46$	-	$5 \cdot 182$	$200 \cdot 52$	$1 \cdot 32$	202.75	$213 \cdot 35$
$2 \cdot 557$	$202 \cdot 08$	$2 \cdot 49$	$205 \cdot 13$	-	12.46	$195 \cdot 21$	$0 \cdot 74$	$196 \cdot 53$	$213 \cdot 80$
$8 \cdot 854$	$197 \cdot 09$	0.97	$198 \cdot 65$	$213 \cdot 55$	$22 \cdot 39$	$187 \cdot 97$	$0 \cdot 41$	$190 \cdot 68$	$213 \cdot 58$
16.07	193.03	0.57	193.43	$213 \cdot 23$	31-33	$186 \cdot 58$	$0 \cdot 28$	$187 \cdot 01$	$213 \cdot 60$
24.93	188.95	(). 36	$189 \cdot 33$	213.63	$43 \cdot 76$	$183 \cdot 22$	$0 \cdot 22$	$183 \cdot 40$	$213 \cdot 72$
37-21	$185 \cdot 27$	$0 \cdot 24$	$185 \cdot 49$	213.79	$57 \cdot 36$	$180 \cdot 81$	(). 19	$181 \cdot 02$	(216.92)
$49 \cdot 15$	$182 \cdot 14$	(). 21	$182 \cdot 34$	(215.74)	79.98	178.84	$0 \cdot 14$	$178 \cdot 91$	--
$65 \cdot 48$	179.91	()•17	$180 \cdot 08$	(214.38)	$98 \cdot 64$	177•74	$0 \cdot 10$	177.99	-

The results for the acids are in the following tables. $c^{\prime \prime}$ is the ionic concentration corresponding to the molecular concentration C, calculated as described in Part IX (J., 1934, 1104), two approximations being sufficient, except for tetrolic acid, where three were required. $K_{1 \text { therm. }}$ is the thermodynamic or true dissociation constant, deduced from the equation log $K_{\text {therm. }}=$ $\log K^{\prime}-1 \cdot 010 c^{\prime \prime 0 \cdot 5}$, where K^{\prime} is the dissociation constant computed from the corresponding degree of dissociation $\alpha^{\prime}=\Lambda_{c} / \Lambda_{e}$. The values of $K_{1 \text { class. }}$ are included for comparison with the data in the literature.
$C \times 10^{4} . \quad \Lambda_{c} . \quad K_{\text {class. }} \times 10^{5} . \quad \Lambda_{e} . \quad c^{\prime \prime} \times 10^{4} . \quad K^{\prime} . \quad K_{\text {therm }} \times 10^{5}$. Acrylic acid $(M=72.03)\left(\Lambda_{0}=388.8\right)$.

Run 1. Cell $Q . \kappa=0.805$.

$1 \cdot 508$	174-28	$5 \cdot 494$	366.88	0.6793	5•571	$5 \cdot 465$
$7 \cdot 740$	91.38	$5 \cdot 575$	$386 \cdot 11$	1.8303	$5 \cdot 668$	$5 \cdot 493$
$13 \cdot 49$	$71 \cdot 60$	$5 \cdot 597$	$385 \cdot 77$	$2 \cdot 5038$	$5 \cdot 696$	$5 \cdot 494$
$27 \cdot 66$	51.69	$5 \cdot 638$	$385 \cdot() 1$	$3 \cdot 7135$	$5 \cdot 759$	5. 506
$43 \cdot 29$	$42 \cdot 40$	$5 \cdot 659$	$384 \cdot 44$	$4 \cdot 7855$	$5 \cdot 797$	$5 \cdot 509$
$59 \cdot 76$	36.08	$5 \cdot 673$	$384 \cdot 16$	$5 \cdot 4248$	$5 \cdot 818$	5.499
82.99	$30 \cdot 85$	$5 \cdot 677$	$383 \cdot 62$	6.6739	$5 \cdot 838$	$5 \cdot 497$
$107 \cdot 8$	$27 \cdot 22$	$5 \cdot 681$	$383 \cdot 22$	7.6570	$5 \cdot 954$	$5 \cdot 502$
Run 2. Cell R. $\quad \kappa=0.817$.						
$4 \cdot 292$	$117 \cdot 01$	-5.561	$386 \cdot 57$	$1 \cdot 2992$	$5 \cdot 639$	5.492
$10 \cdot 47$	$80 \cdot 12$	$5 \cdot 600$	$386 \cdot 08$	$2 \cdot 1726$	$5 \cdot 689$	5. 502
$20 \cdot 02$	$59 \cdot 98$	5.633	385.47	3-1152	$5 \cdot 740$	$5 \cdot 509$
34-37	$46 \cdot 75$	$5 \cdot 648$	$384 \cdot 76$	$4 \cdot 1763$	5.776	$5 \cdot 508$
51.93	$38 \cdot 61$	$5 \cdot 686$	$384 \cdot 18$	$5 \cdot 2190$	$5 \cdot 831$	$5 \cdot 530$
$71 \cdot 67$	$33 \cdot 13$	$5 \cdot 688$	$383 \cdot 74$	6.1876	$5 \cdot 847$	$5 \cdot 518$
$92 \cdot 30$	$29 \cdot 32$	$5 \cdot 703$	383-38	$7 \cdot 0589$	$5 \cdot 846$	$5 \cdot 496$
						$5 \cdot 501$

Organic Acids. Part XIX. Some Unsaturated Acids.
trans-Crotonic acid $(M=86 \cdot 05)\left(\Lambda_{0}=381 \cdot 8\right)$.

$\beta \beta$-Dimethylacrylic acid $(M=100 \cdot 06)\left(\Lambda_{0}=382 \cdot 6\right)$.
Run 1. Cell R. $\kappa=0 \cdot 822$.

$\left(\times 10^{6}\right)$.						$\left(\times 10^{6}\right)$.
1.001	93-89	(7.984)	$381 \cdot 13$	$0 \cdot 2465$	8.057	(7.965)
$4 \cdot 914$	$44 \cdot 87$	$7 \cdot 633$	$380 \cdot 85$	$0 \cdot 5861$	$7 \cdot 738$	$7 \cdot 601$
$13 \cdot 82$	$27 \cdot 51$	$7 \cdot 697$	$380 \cdot 64$	0.9964	$7 \cdot 780$	$7 \cdot 601$
$26 \cdot 54$	$20 \cdot 06$	$7 \cdot 699$	$380 \cdot 49$	$1 \cdot 3991$	$7 \cdot 787$	$7 \cdot 576$
$46 \cdot 20$	$15 \cdot 32$	$7 \cdot 715$	$380 \cdot 34$	$1 \cdot 8608$	$7 \cdot 810$	$7 \cdot 560$
60.42	$13 \cdot 44$	$7 \cdot 721$	$380 \cdot 24$	$2 \cdot 1348$	$7 \cdot 823$	$7 \cdot 561$
$77 \cdot 52$	11.88	$7 \cdot 728$	$380 \cdot 16$	$2 \cdot 4247$	$7 \cdot 830$	$7 \cdot 551$
98.44	10.58	$7 \cdot 735$	$380 \cdot 07$	$2 \cdot 7392$	$7 \cdot 840$	$7 \cdot 561$
Run 2. Cell $Q . \quad \kappa=0.818$.						
$2 \cdot 319$	$63 \cdot 41$	$7 \cdot 636$	380.98	0.3878	$7 \cdot 708$	$7 \cdot 597$
$7 \cdot 517$	36.75	$7 \cdot 673$	$380 \cdot 76$	$0 \cdot 7255$	$7 \cdot 751$	$7 \cdot 598$
$18 \cdot 74$	$23 \cdot 74$	$7 \cdot 693$	$380 \cdot 58$	1-1690	$7 \cdot 777$	$7 \cdot 584$
34.78	$17 \cdot 59$	$7 \cdot 706$	$380 \cdot 41$	1.6082	$7 \cdot 798$	$7 \cdot 571$
$55 \cdot 42$	$14 \cdot 01$	$7 \cdot 713$	$380 \cdot 28$	$2 \cdot 0417$	7.810	$7 \cdot 557$
$73 \cdot 73$	$12 \cdot 18$	$7 \cdot 717$	$380 \cdot 17$	$2 \cdot 3622$	7.818	$7 \cdot 543$
$85 \cdot 68$	11.32	$7 \cdot 729$	$380 \cdot 13$	$2 \cdot 5515$	7.825	$7 \cdot 539$
$95 \cdot 03$	$10 \cdot 76$	$7 \cdot 733$	$380 \cdot 08$	$2 \cdot 6903$	$7 \cdot 838$	$7 \cdot 544$

Furoic acid $(M=112 \cdot 03)\left(\Lambda_{0}=383 \cdot 0\right)$.
Run 1. Cell $Q . \quad \kappa=0.845$.

$1 \cdot 386$	$326 \cdot 61$	$6 \cdot 849$	$382 \cdot 51$	1-1304	6.918		6.748
5-908	$247 \cdot 79$	$7 \cdot 005$	$382 \cdot 26$	$3 \cdot 8292$	$7 \cdot 056$		6.742
11.99	$202 \cdot 25$	$7 \cdot 084$	381.90	$6 \cdot 3486$	$7 \cdot 148$		6.741
24.43	$158 \cdot 87$	$7 \cdot 185$	381-27	$10 \cdot 1790$	$7 \cdot 272$		$6 \cdot 751$
$40 \cdot 94$	$130 \cdot 96$	$7 \cdot 274$	$380 \cdot 50$	$15 \cdot 0917$	$7 \cdot 430$		6.809
53.83	$117 \cdot 74$	$7 \cdot 344$	$379 \cdot 86$	$16 \cdot 6844$	$7 \cdot 495$		$6 \cdot 806$
$78 \cdot 17$	100.96	$7 \cdot 391$	$379 \cdot 19$	20.9267	$7 \cdot 568$		$6 \cdot 805$
$99 \cdot 25$	$91 \cdot 46$	$7 \cdot 436$	378.71	$24 \cdot 2483$	$7 \cdot 615$		$6 \cdot 807$
Run 2. Cell R. $\quad \kappa=0.840$.							
$3 \cdot 243$	$284 \cdot 81$	6.997	382-27	$2 \cdot 4162$	$7 \cdot 062$		6.811
$8 \cdot 262$	$226 \cdot 34$	$7 \cdot 055$	382-12	$4 \cdot 8938$	$7 \cdot 110$		$6 \cdot 754$
$15 \cdot 71$	184.45	$7 \cdot 141$	381-71	$7 \cdot 6325$	$7 \cdot 213$		$6 \cdot 764$
$26 \cdot 15$	$155 \cdot 18$	$7 \cdot 217$	$381 \cdot 19$	$10 \cdot 6455$	$7 \cdot 310$		$6 \cdot 776$
$38 \cdot 29$	$134 \cdot 25$	$7 \cdot 243$	$380 \cdot 65$	$13 \cdot 5044$	$7 \cdot 353$		$6 \cdot 751$
$50 \cdot 12$	$120 \cdot 97$	$7 \cdot 309$	$380 \cdot 19$	15.9474	$7 \cdot 442$		$6 \cdot 767$
71.79	104.56	$7 \cdot 360$	$379 \cdot 37$	19.9864	$7 \cdot 528$		$6 \cdot 787$
$90 \cdot 45$	$95 \cdot 13$	$7 \cdot 424$	$378 \cdot 75$	23.9539	$7 \cdot 620$		$6 \cdot 801$
						Mean	$6 \cdot 776$

Tetrolic acid $(M=84 \cdot 03)\left(\Lambda_{0}=387 \cdot 2\right)$.
Run 1. Cell $R . \quad \kappa=0.845$.

$C \times 10^{4}$.	Λ_{c}.	$\begin{gathered} K_{\text {class. }} \times 10^{5} . \\ \left(\times 10^{3}\right) \end{gathered}$	$\Lambda_{\text {e }}$	$\begin{gathered} c^{\prime \prime} \times 10^{4} . \\ c^{\prime \prime \prime} \times 10^{4} . \end{gathered}$	K^{\prime}.	$\begin{gathered} K_{\text {therm. }} \times 10^{5} . \\ \left(\times 10^{3}\right) \end{gathered}$
$1 \cdot 265$	$360 \cdot 16$	(1-566)	$386 \cdot 77$	$1 \cdot 1782$	$1 \cdot 592$	(1-552)
$9 \cdot 577$	$295 \cdot 13$	$2 \cdot 340$	386.38	6.9861	$2 \cdot 367$	$2 \cdot 226$
$12 \cdot 20$	281.08	$2 \cdot 346$	$386 \cdot 19$	$8 \cdot 4802$	$2 \cdot 374$	$2 \cdot 219$
$25 \cdot 44$	$234 \cdot 21$	$2 \cdot 356$	385•02	$15 \cdot 4761$	$2 \cdot 437$	$2 \cdot 194$
$40 \cdot 96$	204-30	$2 \cdot 412$	383.99	21-7931	$2 \cdot 479$	$2 \cdot 223$
$61 \cdot 76$	$178 \cdot 78$	$2 \cdot 446$	382.93	29-5089	$2 \cdot 526$	$2 \cdot 236$
$74 \cdot 72$	$167 \cdot 33$	$2 \cdot 452$	$382 \cdot 26$	$33 \cdot 7025$	$2 \cdot 546$	$2 \cdot 224$
$94 \cdot 21$	$154 \cdot 08$	$2 \cdot 478$	381-62	39-5615	$2 \cdot 577$	$2 \cdot 246$
Run 2. Cell Q. $\quad \kappa=0.821$.						
$3 \cdot 926$	337.45	$2 \cdot 321$	386.75	$3 \cdot 4414$	$2 \cdot 344$	$2 \cdot 245$
$15 \cdot 21$	$267 \cdot 59$	$2 \cdot 352$	$385 \cdot 87$	$10 \cdot 5477$	$2 \cdot 387$	$2 \cdot 213$
$22 \cdot 15$	$244 \cdot 06$	$2 \cdot 380$	385-27	$14 \cdot 0315$	$2 \cdot 425$	$2 \cdot 223$
$33 \cdot 46$	$217 \cdot 37$	$2 \cdot 414$	384-35	$18 \cdot 9234$	$2 \cdot 464$	$2 \cdot 226$
$54 \cdot 56$	$186 \cdot 65$	$2 \cdot 448$	$383 \cdot 30$	$26 \cdot 5683$	$2 \cdot 522$	$2 \cdot 237$
67-67	$173 \cdot 31$	$2 \cdot 454$	382.73	$30 \cdot 6427$	$2 \cdot 536$	$2 \cdot 230$
$84 \cdot 50$	$160 \cdot 55$	$2 \cdot 482$	$382 \cdot 07$	35.5078	$2 \cdot 574$	$2 \cdot 240$
$100 \cdot 1$	$150 \cdot 99$	$2 \cdot 495$	381.56	$39 \cdot 6114$	$2 \cdot 594$	$2 \cdot 241$
					Mean $2 \cdot 228$	
$C \times 10^{4}$.	Λ_{c}.	$K_{1 \text { class. }} \times 10^{4}$.			K^{\prime}.	$K_{2 \text { therm. }} \times 10^{4}$.
		trans-Glutaco		$30 \cdot 05)\left(\Lambda_{0}\right.$		
Run 1. Cell Q. $\kappa=0.615$.						
$1 \cdot 220$	285.05	$2 \cdot 809$	-	-	-	-
$8 \cdot 516$	$141 \cdot 13$	$1 \cdot 891$	-	-	-	-
$13 \cdot 61$	$116 \cdot 32$	$1 \cdot 856$	-	-	-	-
$21 \cdot 39$	$95 \cdot 09$	1.805	376.41	$5 \cdot 4036$	1.826	(1-730)
$56 \cdot 19$	$62 \cdot 00$	1.806	$375 \cdot 67$	$9 \cdot 2737$	1.833	$1 \cdot 706$
$71 \cdot 46$	$55 \cdot 75$	1-819	$375 \cdot 43$	$10 \cdot 6113$	1.848	1.713
$99 \cdot 67$	$47 \cdot 91$	$1 \cdot 832$	374.99	$12 \cdot 7342$	$1 \cdot 865$	$1 \cdot 717$
Run 2. Cell $R . \quad \kappa=0 \cdot 632$.						
$3 \cdot 980$	202.54	$2 \cdot 458$	-	-	-	-
$14 \cdot 75$	$110 \cdot 92$	$1 \cdot 795$	-	-	-	-
$30 \cdot 12$	$81 \cdot 77$	$1 \cdot 796$	$376 \cdot 19$	$6 \cdot 5470$	$1 \cdot 818$	1.713
$48 \cdot 05$	$66 \cdot 45$	$1 \cdot 800$	$375 \cdot 82$	8.4959	$1 \cdot 825$	1.705
$64 \cdot 18$	$58 \cdot 39$	1.809	$375 \cdot 53$	9.9791	1.837	1.706
$77 \cdot 12$	53.81	1.820	$375 \cdot 36$	11.0556	1.850	$1 \cdot 712$
$87 \cdot 48$	$50 \cdot 87$	$1 \cdot 829$	$375 \cdot 21$	$11 \cdot 8604$	$1 \cdot 860$	$1 \cdot 717$
						Mean 1.711

The values of the equivalent conductivities at round concentrations were interpolated from the con-ductivity-concentration graph drawn with a flexible spline.

$C \times 10^{4}$.	Conductivities at Round Concentrations. Acids.					
	Acrylic.	transCrotonic.	$\beta \beta$-Dimethylacrylic.	Tetrolic.	Furoic.	transGlutaconic (μ).
1	-	-	$90 \cdot 0$	$376 \cdot 0$	$335 \cdot 0$	$290 \cdot 0$
2	$155 \cdot 0$	86.1	-	-	-	-
5	108.3	$67 \cdot 2$	$43 \cdot 3_{5}$	322.0	267.0	$170 \cdot 5$
10	81.6	$52 \cdot 2$	31.8	$289 \cdot 6$	$212 \cdot 0$	129.0
20	60.5	36.8	$22 \cdot 8$	$249 \cdot 7$	$171 \cdot 3$	98.31
30	$49 \cdot 8$	31.0	$19 \cdot 0$	$224 \cdot 5$	$147 \cdot 3$	81.78
40	$43 \cdot 8$	26.9	16.5	$206 \cdot 6$	131.4	71.62
50	$39 \cdot 7$	$23 \cdot 8$	$14 \cdot 7$	$192 \cdot 4$	119.8	65.03
60	$35 \cdot 7$	21.7	$13 \cdot 25$	$180 \cdot 6$	111.4	$60 \cdot 52$
70	$32 \cdot 8$	$20 \cdot 4$	12.2	$272 \cdot 3$	$104 \cdot 9$	56.62
80	$30 \cdot 4$	$19 \cdot 2$	11.3	163.2	99.7	53.34
90	28.8	18.4	$10 \cdot 8$	$257 \cdot 1$	$95 \cdot 3$	$50 \cdot 58$
100	27.9	17.5	$10 \cdot 6$	151.6	$92 \cdot 3$	47.97

Organic Acids. Part XIX. Some Unsaturated Acids. 1611

Sodium salts.						
$C \times 10^{4}$.	Acrylate.	trans- Crotonate.	$\beta \beta$-Dimethylacrylate.	Tetrolate.	Furoate.	$\begin{gathered} \text { trans- } \\ \text { Glutaconate }(\mu) . \end{gathered}$
5	86.18	83.86	$81 \cdot 23$	88.32	83.83	202.70
10	$84 \cdot 17$	83.53	$80 \cdot 42$	$87 \cdot 88$	$83 \cdot 26$	198.33
20	$81 \cdot 66$	$82 \cdot 86$	79.20	$87 \cdot 23$	$82 \cdot 27$	191.75
30	80.04	82.30	78.53	86.46	81.52	186.60
40	78.87	81.78	77.96	85.85	80.94	184.50
50	77.96	81.30	$77 \cdot 45$	$85 \cdot 33$	$80 \cdot 48$	$182 \cdot 30$
60	$77 \cdot 27$	$80 \cdot 83$	76.95	$84 \cdot 86$	$80 \cdot 07$	$180 \cdot 75$
70	76.71	80.41	76.54	$84 \cdot 46$	79.78	$179 \cdot 80$
80	76.26	80.02	$76 \cdot 19$	$84 \cdot 14$	79.48	179.05
90	75.75	79.64	$75 \cdot 87$	$83 \cdot 83$	79.23	$178 \cdot 40$
100	$75 \cdot 19$	$79 \cdot 27$	75.59	$83 \cdot 30$	79.02	177.90

Potentiometric Measurements.-The experimental details have already been described (for references, see this vol., p. 1108). Measurements were conducted in an electrically-controlled oil thermostat maintained at $25^{\circ} \pm 0.01^{\circ}$ with the quinhydrone electrode. The results for monobasic acids were computed as described for phenylacetic acid (J., 1935, 913), and for glutaconic acid as detailed for fumaric acid (Phil. Mag., 1936, 22, 797) (the potentiometric titration figures are incorporated in the table).

NaOH , c.c. $p_{\mathrm{H}} . \quad \mu \times 10^{3} . K_{\text {therm. }} \times 10^{5}$. NaOH, c.c. $p_{\mathrm{H}} . \quad \mu \times 10^{3} . K_{\text {therm. }} \times 10^{5}$. Acrylic acid.

Potentiometric titration of $100 \cdot 00$ c.c. of 0.01 M -acid with $0.01037 \mathrm{M}-\mathrm{NaOH}$ at 25°.

0.00	3.105	-	
10.00	$3 \cdot 457$		
20.00	$3 \cdot 710$	1.923	$5 \cdot 56$
25.00	$3 \cdot 819$	$2 \cdot 225$	5.55
30.00	3.915	2.515	$5 \cdot 57$
35.00	4.013	$2 \cdot 785$	$5 \cdot 50$
$40 \cdot 00$	$4 \cdot 105$	$3 \cdot 042$	$5 \cdot 47$
45.00	$4 \cdot 19$	$3 \cdot 283$	$5 \cdot 54$
50.00	4.274	$3 \cdot 509$	5.53
55.00	$4 \cdot 358$	3.724	$5 \cdot 57$
60.00	$4 \cdot 453$	3.924	5.53
65.00	4.548	$4 \cdot 111$	$5 \cdot 55$
$70 \cdot 00$	$4 \cdot 663$	$4 \cdot 291$	$5 \cdot 42$
$75 \cdot 00$	4.783	$4 \cdot 459$	$5 \cdot 42$
80.00	4.959	-	-
90.00	5.589	-	-
			$5 \cdot 52$

Potentiometric titration of 100.00 c.c. of $0.01 \mathrm{M}-$ acid with $0.00990 \mathrm{M}-\mathrm{NaOH}$ at 25°.

$0 \cdot 00$	$3 \cdot 365$	-	-
$10 \cdot 00$	$3 \cdot 785$	$1 \cdot 064$	$2 \cdot 09$
$20 \cdot 00$	$4 \cdot 086$	$1 \cdot 732$	$2 \cdot 05$
$25 \cdot 00$	$4 \cdot 201$	$2 \cdot 063$	$2 \cdot 08$
$30 \cdot 00$	$4 \cdot 299$	$2 \cdot 334$	$2 \cdot 07$
$35 \cdot 00$	$4 \cdot 391$	$2 \cdot 608$	$2 \cdot 08$
$40 \cdot 00$	$4 \cdot 475$	$2 \cdot 864$	$2 \cdot 11$
$45 \cdot 00$	$4 \cdot 560$	$3 \cdot 101$	$2 \cdot 11$
$50 \cdot 00$	$4 \cdot 644$	$3 \cdot 324$	$2 \cdot 11$
$55 \cdot 00$	$4 \cdot 729$	3.533	$2 \cdot 11$
$60 \cdot 00$	$4 \cdot 820$	$3 \cdot 730$	$2 \cdot 09$
$65 \cdot 00$	$4 \cdot 907$	3.912	$2 \cdot 10$
$70 \cdot 00$	$5 \cdot 000$	$4 \cdot 087$	$2 \cdot 11$
$75 \cdot 00$	$6 \cdot 105$	$4 \cdot 251$	$2 \cdot 12$
$80 \cdot 00$	$5 \cdot 223$	$4 \cdot 405$	$2 \cdot 13$
			Mean
		$2 \cdot 10$	

 Tetrolic acid.

Potentiometric titration of $100 \cdot 00$ c.c. of 0.01 M -acid with $0.00989 \mathrm{M}-\mathrm{NaOH}$ at 25°.

0.00	$3 \cdot 600$	-	-
$10 \cdot 00$	$4 \cdot 174$	-	-
20.00	$4 \cdot 496$	$1 \cdot 666$	$7 \cdot 61$
$25 \cdot 00$	4.614	1.985	7.63
$30 \cdot 00$	4.718	$2 \cdot 280$	$7 \cdot 64$
$35 \cdot 00$	$4 \cdot 826$	$2 \cdot 616$	$7 \cdot 60$
40.00	$4 \cdot 905$	$2 \cdot 813$	$7 \cdot 61$
$45 \cdot 00$	$4 \cdot 989$	$3 \cdot 051$	$7 \cdot 63$
$50 \cdot 00$	$5 \cdot 074$	$3 \cdot 275$	$7 \cdot 63$
$55 \cdot 00$	$5 \cdot 157$	$3 \cdot 484$	$7 \cdot 65$
60.00	$5 \cdot 245$	$3 \cdot 682$	$7 \cdot 61$
$65 \cdot 00$	$5 \cdot 333$	$3 \cdot 865$	$7 \cdot 62$
$70 \cdot 00$	$5 \cdot 428$	$4 \cdot 039$	$7 \cdot 61$
$75 \cdot 00$	$5 \cdot 533$	$4 \cdot 204$	$7 \cdot 58$
$8 \cdot 00$	$5 \cdot 655$	$4 \cdot 357$	$(7 \cdot 48)$
$90 \cdot 00$	$5 \cdot 971$	-	-
$100 \cdot 00$	$6 \cdot 969$	-	-
		Mean	$7 \cdot 62$

$0 \cdot 00$	$2 \cdot 408$	-	-
$10 \cdot 00$	$2 \cdot 508$	-	-
$20 \cdot 00$	$2 \cdot 605$	$4 \cdot 131$	$(2 \cdot 27)$
$25 \cdot 00$	$2 \cdot 660$	$4 \cdot 166$	$2 \cdot 21$
$30 \cdot 00$	$2 \cdot 708$	$4 \cdot 241$	$2 \cdot 23$
$35 \cdot 00$	$2 \cdot 760$	$4 \cdot 302$	$2 \cdot 23$
$40 \cdot 00$	2.813	$4 \cdot 364$	$2 \cdot 24$
$45 \cdot 00$	$2 \cdot 870$	$4 \cdot 418$	$2 \cdot 23$
$50 \cdot 00$	$2 \cdot 929$	$4 \cdot 476$	$2 \cdot 23$
$55 \cdot 00$	$2 \cdot 990$	$4 \cdot 534$	$2 \cdot 24$
$60 \cdot 00$	$3 \cdot 057$	$4 \cdot 586$	$2 \cdot 23$
$65 \cdot 00$	$3 \cdot 132$	$4 \cdot 633$	$2 \cdot 22$
$70 \cdot 00$	$3 \cdot 213$	$4 \cdot 684$	$2 \cdot 22$
$75 \cdot 00$	3.308	$4 \cdot 732$	$2 \cdot 19$
$80 \cdot 00$	$3 \cdot 416$	$4 \cdot 779$	$2 \cdot 19$
$90 \cdot 00$	$3 \cdot 756$	-	-
$100 \cdot 00$	$5 \cdot 337$	-	-
		Mean	$2 \cdot 22$

Furoic acid.
Potentiometric titration of 100.00 c.c. of 0.01 M -acid with $0.00961 M-\mathrm{NaOH}$ at 25°.

$0 \cdot 00$	$2 \cdot 644$	-	
$10 \cdot 00$	$2 \cdot 743$	$2 \cdot 683$	$(7 \cdot 13)$
$20 \cdot 00$	$2 \cdot 871$	$2 \cdot 948$	$6 \cdot 91$
$25 \cdot 00$	$2 \cdot 925$	$3 \cdot 110$	$7 \cdot 08$
$30 \cdot 00$	$2 \cdot 990$	$3 \cdot 242$	$6 \cdot 98$
$35 \cdot 00$	$3 \cdot 051$	$3 \cdot 360$	$6 \cdot 94$
$40 \cdot 00$	$3 \cdot 111$	$3 \cdot 520$	$7 \cdot 01$
$45 \cdot 00$	$3 \cdot 176$	$3 \cdot 649$	$6 \cdot 99$
$50 \cdot 00$	$3 \cdot 237$	$3 \cdot 784$	$7 \cdot 09$
$55 \cdot 00$	$3 \cdot 311$	$3 \cdot 898$	$6 \cdot 93$
$60 \cdot 00$	$3 \cdot 379$	$4 \cdot 022$	$7 \cdot 00$
$65 \cdot 00$	$3 \cdot 455$	$4 \cdot 136$	$6 \cdot 99$
$70 \cdot 00$	$3 \cdot 540$	$4 \cdot 246$	$6 \cdot 93$
$75 \cdot 00$	$3 \cdot 624$	$4 \cdot 356$	$7 \cdot 05$
$80 \cdot 00$	$3 \cdot 726$	$4 \cdot 459$	$7 \cdot 07$
$90 \cdot 00$	$4 \cdot 000$	-	-
$100 \cdot 00$	$4 \cdot 452$	-	-
		Mean	$7 \cdot 00$

trans-Glutaconic acid.
Potentiometric titration of 100.00 c.c. of 0.005 M -acid with $0.01170 \mathrm{M}-\mathrm{NaOH}$ at 25°. Calculation of

Pairs of points used. NaOH, c.c.	p_{H}.	$\mu \times 10^{3}$.	$\begin{aligned} & K_{1 \text { class }} \\ & \times \quad 10^{4} . \end{aligned}$	$\begin{gathered} K_{1 \text { therrm: }} \\ \times 10^{4} \end{gathered}$	$\begin{aligned} & K_{\text {zelaxes. }} \\ & \times 10^{6} . \end{aligned}$	$\begin{aligned} & K_{2 \text { therm }} \\ & \times 10^{6} \end{aligned}$
0.00 \}	$3 \cdot 406$	-	-		-	
$45.00\}$	$4 \cdot 425$	--.	-			
10.00 \}	3-377	-...	..-	-	-	
50.00)	$4 \cdot 575$	-	-			
$15.00)$	3.548	1.825	1.82	1.73		
$55.00\}$	$4 \cdot 724$	$5 \cdot 146$	-	-	11.42	$8 \cdot 67$
17.50)	3.623	$2 \cdot 015$	1.83	1.74	-	
57.50 \}	$4 \cdot 807$	$5 \cdot 400$			$11 \cdot 27$	$8 \cdot 64$
$20 \cdot 00$	$3 \cdot 712$	$2 \cdot 232$	1.76	1.66		
$62 \cdot 50\}$	$4 \cdot 978$	$6 \cdot 026$	-	-	10.92	$8 \cdot 33$
$22 \cdot 50$	3.775	$2 \cdot 390$	1.81	1.71	-	
$65.00\}$	5.052	-6.230			11.14	8.46
$25 \cdot 00$	$3 \cdot 846$	$2 \cdot 582$	1.81	1.71	-118	-
$\left.\begin{array}{l}60.00 \\ 27.50\end{array}\right\}$	4.885 3.920	5.750 2.732			11.18	$8 \cdot 58$
$\left.\begin{array}{l}27.50 \\ 67.50\end{array}\right\}$	3.920 $5 \cdot 146$	$2 \cdot 732$ 6.511	$1 \cdot 80$	$1 \cdot 70$	11.01	8.31
$30 \cdot 00$)	$4 \cdot 000$	$2 \cdot 970$	1.77	1.66	-	
$70.00\}$	$5 \cdot 240$	$6 \cdot 687$		-	11.07	$8 \cdot 32$
$32 \cdot 50$	4.068	3.189	1.79	$1 \cdot 68$	-	
$72.50\}$	$5 \cdot 352$	$6 \cdot 931$,	-	$10 \cdot 85$	8.92
35.00	$4 \cdot 140$	$3 \cdot 140$	1-82	1.70	-	-
$\left.\begin{array}{l}75 \cdot 00 \\ 40.00\end{array}\right\}$	$5 \cdot 481$	$7 \cdot 175$	-	-	10.75	8.00
$\left.\begin{array}{l}40 \cdot 00 \\ 80.00\end{array}\right\}$	$4 \cdot 269$	-	-	二	-	-
$80 \cdot 00$)	5.701	-	-	-	-	

The authors' thanks are due to the Royal Society and Imperial Chemical Industrics for grants.

Woolwich Polytechnic, London. S.E. 18.
University College, Southampton.

